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Abstract: This research aims to optimise the design of a co-axial twin counter rotating rotor horizontal axis turbine. The rotors are
modeled as actuator discs positioned inside two concentric stream tubes. The flow in the inner stream tube passes through the inner
region of the upstream rotor and the stream tube cross section area expands to cover the entire downstream rotor. The flow in the outer
stream tube passes through the external part up to the blade tip of the upstream rotor. Using the axial momentum equation in
conjunction with the mass conservation equation reveals that the turbine maximum power coefficient is 81.4%. This is achieved when
the inner part of the upstream rotor has zero solidity and covers 58% of the total swept area or corresponding to 76.2% of the diameter
of the downstream rotor. In practice, this part of the turbine blade is designed to generate minimum drag as its function is only to
support the blade tip and not to extract the fluid energy itself. The turbine blades in the outer region of the upstream rotor are designed
using Betz theory which specifies the local axial flow velocity to be 2/3 of the free stream. The local axial flow velocity at the

downstream rotor is 0.582 of the free stream velocity.
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1. INTRODUCTION

Since its introduction in 1933, the Betz theory [1] for turbine
has been fundamental in turbine development history. The
theory itself comprises of an analysis of axial momentum
equation together with the mass continuity equation. The
power developed in the turbine shaft when compared to the
fluid power is usually presented in the form of power
coefficient, such as
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where

denotes power coefficient of the turbine
denotes the developed power (watts)
denotes the fluid density (kg/m®)
denotes the turbine swept area (m?)

is the flow speed past the rotor (m/s)
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The power coefficient is a function of the instantaneous flow

speed past the rotor. The flow speed of EV , in another
3 0

0 ?

words the flow speed behind the rotor is v ZEV

corresponds to the maximum power coefficient which can be
generated. This is also known as the Betz limit. The value of
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the maximum power coefficient is C oy = == OF 59.3%.
27

This theory is often used in conjunction with the blade

element theory in rotor blade design applications.

Newman [2] proposed a method to analyse the power
coefficient of a horizontal axis turbine which consists of two
rotor discs in series. It was found that the maximum power
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coefficient would increase to Cpmax =— or 64% of the

fluid power. The conditions at which maximum power is
generated require the flow speed past the first rotor to be
O,SVOO and the flow speed past the second (downstream) rotor

to be 0'4‘/00' Subsequently, Newman [3] extended the theory
to accommodate for calculation of power coefficient of
horizontal axis turbine with infinite number of rotor discs in
series and found that the maximum power coefficient would

increase to C Pmax — ~ Or 66.67% of the fluid power.

Fig.1 Illustration of a co-axial twin rotor horizontal axis
turbine

Apart from theoretical advances in turbine power generation
computation, there are also significant developments in
designs, such as horizontal axis turbine with multiple counter
rotating rotor discs. Figure 1 shows an illustration of a
horizontal axis turbine with two rotor discs. The first
(upstream) rotor converts part of the fluid energy into kinetic
energy. The flow speed aft of the first rotor would drop
compared to the free stream velocity but there is still enough
energy in the flow to be harnessed by the second rotor disc
which is situated downstream of the first rotor disc. The
kinetic energy from the shafts of both rotors would finally be
converted into electrical energy. It is common to employ the
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kinetic energy from the first rotor disc to drive the rotor of the
generator, while the kinetic energy from second rotor disc is
used to drive the stator of the generator.

Ushiyama et al. [4] developed and built a counter rotating
turbine model. They tested their model with 3, 4 and 6 blades
on the 0.6m diameter upstream rotor, and with 2 and 3 blades
at the 1.2m diameter downstream rotor. They recorded an
increase in turbine power coefficient and relative RPM
compared to conventional single rotor turbines, and hence
recommended further work in their design.

Jung et al. [5] designed a co-axial counter rotating rotor
horizontal axis wind turbine, which was rated at 30kW at
airspeed of 10.6m/s. The main (downstream) rotor had a
diameter of 11m and the auxiliary (upstream) rotor had a
diameter of 5.5m. The main rotor rotated with half the speed
of the auxiliary rotor. The mechanical power output of both
rotors was combined by a series of gears and was finally used
to drive a generator. They found that a turbine with two rotors
produced higher power than a single rotor turbine, depending
on the distance between the rotors. It was found that there is a

21% increase in power coefficient (up to C p= 0.50) when
the distance between the rotors is half of the main rotor.

Kanemoto and Galal [6] proposed a twin rotor in series turbine
for use with synchronous generators. The power developed by
the upstream rotor would drive the internal armature while the
downstream rotor would provide power for the external
armature. The upstream rotor of their turbine model had a
550mm diameter and the downstream rotor had a 390mm
diameter. At low flow speed, both rotors initially rotated in the
same direction and the downstream rotor would rotate at a
higher speed due to its smaller size. As the flow speed
increased, the rotational speed of the downstream rotor would
decrease. The authors also suggested that the optimum number
of turbine blades is three for the upstream rotor and between
four to six blades for the downstream rotor. The main
advantages of this type of wind turbine are higher power
generation than traditional single rotor systems and the
constant output in the rated operation mode without the
installation of brakes or pitch control mechanism.

Shen et al. [7] numerically analysed the efficiency of a turbine
with two counter rotating rotors. They used the characteristic
curves of the three-bladed Nordtank 500kW turbine in their
work. It was found that yearly electrical power generation of
the turbine with two counter rotating rotors would be 43%
higher than a conventional turbine.

Clarke et al. [8] developed a counter rotating marine current
turbine specifically for uses in straights with high velocity
current flows. They discovered that the counter rotating
turbine generated higher power and almost zero reaction
torque on the supporting structures. Another desirable feature
is that there is near zero swirl in the wake.

Theoretical analysis suggests that a turbine with two counter
rotating rotors will increase the maximum power coefficient
by 8% compared to a single rotor turbine. However, many
experimental results have shown that the increase can be as
high as 21%. Hence this research main interest is to determine
the optimum design of a turbine with two counter rotating
rotors and the optimum wind speed using a mathematical

model based on the axial momentum theory.
2. METHODOLOGY

The actuator disc theory [1] will be used to analyse the power
coefficient of the horizontal axis turbine with two rotors in
series.
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Fig.2 Diagram of a turbine with two co-axial rotors

The diagram in figure 2 shows a side view cross section of a
horizontal axis turbine with two rotors in series exposed to a
horizontal air flow of speed V. The upstream and downstream
rotors will be called rotor 1 and rotor 2, respectively. Rotor 1
extracts the wind energy from the flow of speed V and

converts it to kinetic energy P1 . It has a cross section area A1
which consists of two regions namely the inner circular part of
area A1 and the outer ring-shaped part of area A2 . The two

regions of the swept area are separated by stream tube 1 (See
figure 2). The cross section area of this stream tube increases

downstream to cover the entire swept area of rotor 2, A2 . The
power generated by the inner and outer regions of rotor 1 and

by rotor 2 are denoted P17 P1 and P,

Inner —Outer °

respectively.

The flow of speed V passes through the inner region of rotor 1

with a local speed of (1 —a)V which causes a pressure drop

Aplflmm across the rotor within stream tube 1. This also

causes a change in flow speed, hence in the region
downstream of rotor 1 the flow speed is represented by

(l—b)V. The pressure at this part of the stream tube is

equal to the atmospheric pressure. (See figure 3b for axial
pressure profile) Flow speed drops further when it passes
through (the entire area of) rotor 2 where the local speed

is(1— b— ¢)V . The pressure drop across rotor 2 is given by

Ap2 and the final flow speed downstream of rotor 2 is given
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by (1—b —d)V . The pressure at this position must be equal
to the atmospheric pressure.

The ring shaped outer region of the swept area of rotor 1,
bound by stream tubes 1 and 2, has a local flow speed

of (1—€)V . This results in a pressure drop Apl_oum
across the rotor. The flow in this stream tube will decelerate
further downstream until the speed is (1— f)V where the
pressure is equal to the atmospheric pressure.

See figure 3a for the numbering system of regions used in the
following section.

The axial load generated at the inner region of rotor 1 is given
by

p— + -

71I—Irmer - Al—Inner '(pl—lnner - pl—lnner ) (2)
The axial load generated at the outer region of rotor 1 is given
by

+ _
7—vl—Om‘er = Al*Outer '(pl—Outerr - pl—Outer ) (3)

The axial load generated at rotor 2 is given by
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c. Pressure profile in stream tube 2
Fig.3 Flow velocities and pressure at various stages
Applying the Bernoulli's equation at region 0 and a position
immediately upstream of region 1 to obtain

2 2172
p0+05pv :pltlnner-i_o'sp(l_a) V (5)
Applying the Bernoulli's equation at a position immediately
downstream of region 1 and region 2 to obtain

Prime +0.5p(1=a)°V? = p +0.5p(1-b)'V? (©)

Applying the Bernoulli's equation at region 2 and a position
immediately upstream of region 3 to obtain

P +0.5p(1-b)*V? = pi +05p(1l-b—c)V?

Applying the Bernoulli's equation at a position immediately
downstream of region 3 and region 4 to obtain

p; +05p(1-b—c)V?=p,+05p(1-b—-d)V?
(8)

Applying the Bernoulli's equation at region 0 and immediately
upstream of region 5 to obtain

p() +05pV2 = pltOuzer +05p(1_e)V2 (9)

Applying the Bernoulli's equation at a position immediately
downstream of region 5 and region 6 to obtain

Prouwer +0-5p(1=€)’V? = p, +05p(1- f 'V (10)

Combining equations 5 and 6 to obtain

Pitmer = Promer =0-50 [1 - (1 - b)2 ]V2

Combining equations 7 and 8 to obtain

pi=p; =05p|1-b) —(1-b-a) |y

Combining equations 9 and 10 to obtain
+ - —_ 2 2
pl—Outer - pl—Outer - Osp ll - (1 - f) JV

The expressions for axial loads (equations 2—4) can be
rewritten as

T per =030 A er ll_(l_b)z JV2 (11)

L= O'S'OAZ[(I_Z’)Z —(1—b—d)2]vz
—05pA,[2d ~2bd - d? v

o 2050 A o - F I s

The axial loads generated by the rotors can also be computed
using the axial flow momentum equation, which gives

]ﬂlflrmer = p Alflrmer (1 - Cl)[l - (1 - b)] V ? (14)
T, :pAz(l—b—c)[(l—b)—(l—b—d)]V2
=pA,d(1-b-c) V?
T‘l*Outer = p Al*Outer (1 - e)[l - (1 - f)]V : (16)

(12)

15)

Equating equations 11-13 to equations 14-16, respectively, to
obtain

b=2a a7n
d=2c (18)
f=2e (19)

The mechanical power generated by the turbine is determine
from the rate of change of kinetic energy with respect to time.
Therefore, the power generated by each region of the turbine
is given by
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[)l—lnner = Osp Al—lnner V le - (1 - b)ZVzJ
- O SpAl Innerv [4(1(1 - a)2]
20)
P, =05pA,(1-b—cWV[1-b)V? —(1=b-a)'V?]
=0.5pA4,V* (1-b—c)2d —2bd —d”]
1)

I)I—Outer = O‘SpAl—Outer (1 - e)V |_V ?

(TR
=0.5pA ...V ? [46(1 - 6)2 ]

Hence, the total mechanical power generation is given by

P=P + P, + P,

1-Inner 1-Outer

It can be rewritten in the power coefficient form as

C, = (%j [4a(1 - a)Z]
N [%j[ﬁte(l ~ef]
+[%j(1_b —c)2d —2bd —d?)

Let the two rotors have the same swept area,

A
A=A, =(AL e + Ao ) and let m =-—10mer

1—-Inner

we obtain

C,= m|_4a(1 — a)2 J+ (1 - m)|_4e(1 - e)z J (23)
+(1-b-c)2d —2bd - d?)

Equation 23 describes the power coefficient of a twin-rotor
turbine. Let us now consider only the outer region of rotor 1,
the flow in stream tube 2 is independent from any contribution
of rotor 2 and can be analysed separately. Hence, for this
region alone, the power coefficient can be maximized by
varying the value of e, and the power coefficient is at the

maximum when € = — . Therefore, the power coefficient can

be rewritten as

CP:m[4a(1— ]J{ )(1— ) 4
+(-b-c) (2d - 2bd - a?)

Considering the flow in stream tube 1, the mass conservation
equation gives a flow speed relationship as

m(1-a)=(1-2a-c) 25)
Finally, the power coefficient can be written as a function of

induction velocities a and c¢. This is done by substituting
equation 25 into equation 24 to obtain

C, 41 2a — c)(a+c 2ac—a’ 02)

( i)

3. RESULTS AND DISCUSSION
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Fig.4 Power coefficient as a function of induction velocities a
and ¢
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Fig.5 Power coefficient of the turbine and of each rotor at

a=0

Figures 4 and 5 show the variation of power coefficient with
respect to changes in induction velocities a and c¢. The graphs
have been constructed using numerical substitutions into
equation 26.

Figure 4 shows the total power coefficient of the turbine when
the induction velocity at rotor 2 is allowed to vary between

0<¢<0.5 and the induction velocity at the inner region
of rotor 1 takes the value of g =0,0.10,0.20,0.30, 1/3 and

0.40. Results which do not satisfy the mass conservation
conditions are not presented here.

It is found that the power coefficient is at the maximum

whena =0, representing zero velocity drop across rotor 1,
which relates to an absence of rotor blades. Substituting the
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valuea = into equation 26 gives
16
C,=4c(l-cf +| —|c
=4cli-of +( 30)

The maximum power coefficient C is calculated by

P max
differentiating the above expression with respect to rotor 2
induction velocity c¢. We obtain a quadratic equation
c®-1.3333¢+0.382716=0 , whose
¢=0.418. The negative solution is physically not possible
and thus ignored. The corresponding maximum power

=0.814 which agrees with the result

solution is

coefficientis C P max

shown in figure 4. Finally, the ratio of areas of rotor 1 inner

A
and outer regions is I = ZAzhmer —(),58.

Figure 5 shows the total power coefficient of the entire turbine
and contributions from each rotor disc. It is found that

when C = 5, the power coefficient of rotor 2 C po 1S at the

maximum and the corresponding turbine total power
coefficient is C P =0.79 However, the maximum total
power coefficient is actually found at ¢ =0.418 where
C =0.814 . This is caused by the increase in C Pl

due to a reduction of area within stream tube 1, i.e. an increase
in area of the outer region of rotor 1.

P max

4. DISCUSSIONS

The maximum power coefficient of the turbine found in this
work is significantly higher than the value found by Newman
[2]. This can be explained by the uniform flow rate past both
regions of rotor 1 and rotor 2 is positioned in the wake of the
inner region of rotor 1.

5. CONCLUSIONS

This study has proposed a new design in coaxial twin rotor
horizontal axis turbine with a maximum power coefficient of

C =0.814 which is significantly larger than that of

previous model [2]. The design proposes a 'bladeless' centre
part of the upstream rotor which covers 58% of the rotor area
or 76.2% of the rotor diameter. This part of the rotor only
functions as a load transmitter and is not designed to extract
the wind energy. See figure 6. The portion of the blade near
the rotor tip is designed using the Betz theory, i.e. the velocity
of the axial flow past the rotor is two-thirds of the free stream
velocity. The velocity of the axial flow past the downstream
rotor is 58.2% of the free stream velocity.

P max
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Fig.6 Illustration of the proposed design of a co-axial twin
rotor horizontal axis turbine
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