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1. INTRODUCTION 

 
Since its introduction in 1933, the Betz theory [1] for turbine 

has been fundamental in turbine development history. The 

theory itself comprises of an analysis of axial momentum 

equation together with the mass continuity equation. The 

power developed in the turbine shaft when compared to the 

fluid power is usually presented in the form of power 

coefficient, such as 

35.0 AV

P
CP ρ

=     (1) 

 

where 

 

CP denotes power coefficient of the turbine 

P denotes the developed power (watts) 

ρ denotes the fluid density (kg/m3) 

A denotes the turbine swept area (m2) 

V is the flow speed past the rotor (m/s) 

 

The power coefficient is a function of the instantaneous flow 

speed past the rotor. The flow speed of 
∞V

3

2
, in another 

words the flow speed behind the rotor is ∞= Vv
3

1
, 

corresponds to the maximum power coefficient which can be 

generated. This is also known as the Betz limit. The value of 

the maximum power coefficient is
27

16
max =PC  or 59.3%. 

This theory is often used in conjunction with the blade 

element theory in rotor blade design applications. 

 

Newman [2] proposed a method to analyse the power 

coefficient of a horizontal axis turbine which consists of two 

rotor discs in series. It was found that the maximum power 

coefficient would increase to 
25

16
max =PC  or 64% of the 

fluid power. The conditions at which maximum power is 

generated require the flow speed past the first rotor to be 

∞V8.0  and the flow speed past the second (downstream) rotor 

to be ∞V4.0 . Subsequently, Newman [3] extended the theory 

to accommodate for calculation of power coefficient of 

horizontal axis turbine with infinite number of rotor discs in 

series and found that the maximum power coefficient would 

increase to 
3

2
max =PC  or 66.67% of the fluid power. 

 

 
Fig.1 Illustration of a co-axial twin rotor horizontal axis 

turbine 

 

Apart from theoretical advances in turbine power generation 

computation, there are also significant developments in 

designs, such as horizontal axis turbine with multiple counter 

rotating rotor discs. Figure 1 shows an illustration of a 

horizontal axis turbine with two rotor discs. The first 

(upstream) rotor converts part of the fluid energy into kinetic 

energy. The flow speed aft of the first rotor would drop 

compared to the free stream velocity but there is still enough 

energy in the flow to be harnessed by the second rotor disc 

which is situated downstream of the first rotor disc. The 

kinetic energy from the shafts of both rotors would finally be 

converted into electrical energy. It is common to employ the 
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kinetic energy from the first rotor disc to drive the rotor of the 

generator, while the kinetic energy from second rotor disc is 

used to drive the stator of the generator. 

 

Ushiyama et al. [4] developed and built a counter rotating 

turbine model. They tested their model with 3, 4 and 6 blades 

on the 0.6m diameter upstream rotor, and with 2 and 3 blades 

at the 1.2m diameter downstream rotor. They recorded an 

increase in turbine power coefficient and relative RPM 

compared to conventional single rotor turbines, and hence 

recommended further work in their design. 

 

 

Jung et al. [5] designed a co-axial counter rotating rotor 

horizontal axis wind turbine, which was rated at 30kW at 

airspeed of 10.6m/s. The main (downstream) rotor had a 

diameter of 11m and the auxiliary (upstream) rotor had a 

diameter of 5.5m. The main rotor rotated with half the speed 

of the auxiliary rotor. The mechanical power output of both 

rotors was combined by a series of gears and was finally used 

to drive a generator. They found that a turbine with two rotors 

produced higher power than a single rotor turbine, depending 

on the distance between the rotors. It was found that there is a 

21% increase in power coefficient (up to 50.0=PC ) when 

the distance between the rotors is half of the main rotor. 

 

Kanemoto and Galal [6] proposed a twin rotor in series turbine 

for use with synchronous generators. The power developed by 

the upstream rotor would drive the internal armature while the 

downstream rotor would provide power for the external 

armature. The upstream rotor of their turbine model had a 

550mm diameter and the downstream rotor had a 390mm 

diameter. At low flow speed, both rotors initially rotated in the 

same direction and the downstream rotor would rotate at a 

higher speed due to its smaller size. As the flow speed 

increased, the rotational speed of the downstream rotor would 

decrease. The authors also suggested that the optimum number 

of turbine blades is three for the upstream rotor and between 

four to six blades for the downstream rotor. The main 

advantages of this type of wind turbine are higher power 

generation than traditional single rotor systems and the 

constant output in the rated operation mode without the 

installation of brakes or pitch control mechanism. 

 

Shen et al. [7] numerically analysed the efficiency of a turbine 

with two counter rotating rotors. They used the characteristic 

curves of the three-bladed Nordtank 500kW turbine in their 

work. It was found that yearly electrical power generation of 

the turbine with two counter rotating rotors would be 43% 

higher than a conventional turbine. 

 

Clarke et al. [8] developed a counter rotating marine current 

turbine specifically for uses in straights with high velocity 

current flows. They discovered that the counter rotating 

turbine generated higher power and almost zero reaction 

torque on the supporting structures. Another desirable feature 

is that there is near zero swirl in the wake. 

 

Theoretical analysis suggests that a turbine with two counter 

rotating rotors will increase the maximum power coefficient 

by 8% compared to a single rotor turbine. However, many 

experimental results have shown that the increase can be as 

high as 21%. Hence this research main interest is to determine 

the optimum design of a turbine with two counter rotating 

rotors and the optimum wind speed using a mathematical 

model based on the axial momentum theory.  

  

2. METHODOLOGY 
 
The actuator disc theory [1] will be used to analyse the power 

coefficient of the horizontal axis turbine with two rotors in 

series. 

 

 
Fig.2 Diagram of a turbine with two co-axial rotors 

 

 

The diagram in figure 2 shows a side view cross section of a 

horizontal axis turbine with two rotors in series exposed to a 

horizontal air flow of speed V. The upstream and downstream 

rotors will be called rotor 1 and rotor 2, respectively. Rotor 1 

extracts the wind energy from the flow of speed V and 

converts it to kinetic energy 1P . It has a cross section area 1A  

which consists of two regions namely the inner circular part of 

area 1A  and the outer ring-shaped part of area 2A . The two 

regions of the swept area are separated by stream tube 1 (See 

figure 2). The cross section area of this stream tube increases 

downstream to cover the entire swept area of rotor 2, 2A . The 

power generated by the inner and outer regions of rotor 1 and 

by rotor 2 are denoted InnerP−1 , OuterP−1 , and 2P , 

respectively.  

 

The flow of speed V passes through the inner region of rotor 1 

with a local speed of Va)1( − which causes a pressure drop 

Innerp −∆ 1  across the rotor within stream tube 1. This also 

causes a change in flow speed, hence in the region 

downstream of rotor 1 the flow speed is represented by 

Vb)1( − . The pressure at this part of the stream tube is 

equal to the atmospheric pressure. (See figure 3b for axial 

pressure profile) Flow speed drops further when it passes 

through (the entire area of) rotor 2 where the local speed 

is Vcb )1( −− . The pressure drop across rotor 2 is given by 

2p∆  and the final flow speed downstream of rotor 2 is given 
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by Vdb )1( −− . The pressure at this position must be equal 

to the atmospheric pressure. 

 

The ring shaped outer region of the swept area of rotor 1, 

bound by stream tubes 1 and 2, has a local flow speed 

of Ve)1( − . This results in a pressure drop Outerp −∆ 1  

across the rotor. The flow in this stream tube will decelerate 

further downstream until the speed is Vf )1( − where the 

pressure is equal to the atmospheric pressure.  

 

See figure 3a for the numbering system of regions used in the 

following section. 

 

The axial load generated at the inner region of rotor 1 is given 

by 

( )−
−

+
−−− −= InnerInnerInnerInner ppAT 1111 .        (2) 

The axial load generated at the outer region of rotor 1 is given 

by 

( )−
−

+
−−− −= OuterOuterrOuterOuter ppAT 1111 .      (3) 

The axial load generated at rotor 2 is given by 

( )−+ −= 2222 . ppAT      (4) 

 

 

 
Fig.3 Flow velocities and pressure at various stages 

Applying the Bernoulli's equation at region 0 and a position 

immediately upstream of region 1 to obtain 

( ) 22

1

2

0 15.05.0 VapVp Inner −+=+ +
− ρρ       (5) 

Applying the Bernoulli's equation at a position immediately 

downstream of region 1 and region 2 to obtain 

( ) 22

0

22

1 15.0)1(5.0 VbpVap Inner −+=−+−
− ρρ   (6) 

Applying the Bernoulli's equation at region 2 and a position 

immediately upstream of region 3 to obtain 

( ) 22

2

22

0 15.0)1(5.0 VcbpVbp −−+=−+ + ρρ    (7) 

Applying the Bernoulli's equation at a position immediately 

downstream of region 3 and region 4 to obtain 

( ) ( ) 22

0

22

2 15.015.0 VdbpVcbp −−+=−−+− ρρ  

(8) 

Applying the Bernoulli's equation at region 0 and immediately 

upstream of region 5 to obtain 

( ) 2

1

2

0 15.05.0 VepVp Outer −+=+ +
− ρρ     (9) 

Applying the Bernoulli's equation at a position immediately 

downstream of region 5  and region 6 to obtain 

( ) ( ) 22

0

22

1 15.015.0 VfpVep Outer −+=−+−
− ρρ  (10) 

 

Combining equations 5 and 6 to obtain 

( )[ ] 22

11 115.0 Vbpp InnerInner −−=− −
−

+
− ρ  

Combining equations 7 and 8 to obtain 

( ) ( )[ ] 222

22 115.0 Vdbbpp −−−−=− −+ ρ  

Combining equations 9 and 10 to obtain 

( )[ ] 22

11 115.0 Vfpp OuterOuter −−=− −
−

+
− ρ  

 

The expressions for axial loads (equations 2–4) can be 

rewritten as 

( )[ ] 22

11 115.0 VbAT InnerInner −−= −− ρ    (11) 

( ) ( )[ ]
[ ] 22

2

222

22

225.0

115.0

VdbddA

VdbbAT

−−=

−−−−=

ρ

ρ
  (12) 

( )[ ] 22

11 115.0 VfAT OuterOuter −−= −− ρ    (13) 

 

The axial loads generated by the rotors can also be computed 

using the axial flow momentum equation, which gives 

 

( ) ( )[ ] 2

11 111 VbaAT InnerInner −−−= −− ρ  (14) 

( ) ( ) ( )[ ]
( ) 2

2

2

22

1

111

VcbdA

VdbbcbAT

−−=

−−−−−−=

ρ

ρ
 (15) 

( ) ( )[ ] 2

11 111 VfeAT OuterOuter −−−= −− ρ     (16) 

 

Equating equations 11–13 to equations 14–16, respectively, to 

obtain 

ab 2=    (17) 

cd 2=    (18) 

ef 2=   (19) 

 

The mechanical power generated by the turbine is determine 

from the rate of change of kinetic energy with respect to time. 

Therefore, the power generated by each region of the turbine 

is given by 
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( ) ( )[ ]
( )[ ]23

1

222

11

145.0

115.0

aaVA

VbVVaAP

Inner

InnerInner

−=

−−−=

−

−−

ρ

ρ
 

(20) 

 

( ) ( ) ( )[ ]
( )[ ]23

2

2222

22

2215.0

1115.0

dbddcbVA

VdbVbVcbAP

−−−−=

−−−−−−=

ρ

ρ

                  (21) 

 

( ) ( )[ ]
( )[ ]23

1

222

11

145.0

115.0

eeVA

VfVVeAP

Outer

OuterOuter

−=

−−−=

−

−−

ρ

ρ
  (22) 

 

Hence, the total mechanical power generation is given by 

211 PPPP OuterInner ++= −−  

 

It can be rewritten in the power coefficient form as 

( )[ ]

( )[ ]

( )( )22

21

21

221

14

14

dbddcb
A

A

ee
A

A

aa
A

A
C

Outer

Inner

P

−−−−







+

−







+

−







=

−

−

 

 

Let the two rotors have the same swept area, 

( )OuterInner AAAA −− +== 112  and let
A

A
m Inner−= 1

, 

we obtain 

 

( )[ ] ( ) ( )[ ]
( )( )2

22

221

14114

dbddcb

eemaamCP

−−−−+

−−+−=
   (23) 

 

Equation 23 describes the power coefficient of a twin-rotor 

turbine. Let us now consider only the outer region of rotor 1, 

the flow in stream tube 2 is independent from any contribution 

of rotor 2 and can be analysed separately. Hence, for this 

region alone, the power coefficient can be maximized by 

varying the value of e, and the power coefficient is at the 

maximum when
3

1
=e . Therefore, the power coefficient can 

be rewritten as 

( )[ ] ( )

( ) ( )2

2

221

1
27

16
14

dbddcb

maamC P

−−−−+

−






+−=
    (24) 

 

Considering the flow in stream tube 1, the mass conservation 

equation gives a flow speed relationship as 

( ) ( )caam −−=− 211    (25) 

Finally, the power coefficient can be written as a function of 

induction velocities a and c. This is done by substituting 

equation 25 into equation 24 to obtain 

( )( )









−
+








+

−−−+−−=

a

ca

caaccacaCP

127

16

2214 22

    (26) 

 

 

3. RESULTS AND DISCUSSION 
 

 
Fig.4 Power coefficient as a function of induction velocities a 

and c 

 

 
Fig.5 Power coefficient of the turbine and of each rotor at 

0=a  

 

Figures 4 and 5 show the variation of power coefficient with 

respect to changes in induction velocities a and c. The graphs 

have been constructed using numerical substitutions into 

equation 26. 

 

Figure 4 shows the total power coefficient of the turbine when 

the induction velocity at rotor 2 is allowed to vary between 

5.00 ≤≤ c  and the induction velocity at the inner region 

of rotor 1 takes the value of 31,30.0,20.0,10.0,0=a  and 

0.40. Results which do not satisfy the mass conservation 

conditions are not presented here. 

 

It is found that the power coefficient is at the maximum 

when 0=a , representing zero velocity drop across rotor 1, 

which relates to an absence of rotor blades. Substituting the 
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value 0=a  into equation 26 gives 

( ) cccCP 






+−=
27

16
14

2
 

The maximum power coefficient maxPC  is calculated by 

differentiating the above expression with respect to rotor 2 

induction velocity c. We obtain a quadratic equation 

0382716.03333.12 =+− cc , whose solution is 

418.0=c . The negative solution is physically not possible 

and thus ignored. The corresponding maximum power 

coefficient is 814.0max =PC  which agrees with the result 

shown in figure 4. Finally, the ratio of areas of rotor 1 inner 

and outer regions is 58.01 == −

A

A
m Inner

. 

 

Figure 5 shows the total power coefficient of the entire turbine 

and contributions from each rotor disc. It is found that 

when
3

1
=c , the power coefficient of rotor 2 2PC  is at the 

maximum and the corresponding turbine total power 

coefficient is 79.0=PC  However, the maximum total 

power coefficient is actually found at 418.0=c  where 

814.0max =PC . This is caused by the increase in 1PC  

due to a reduction of area within stream tube 1, i.e. an increase 

in area of the outer region of rotor 1. 

 

4. DISCUSSIONS 
 

The maximum power coefficient of the turbine found in this 

work is significantly higher than the value found by Newman 

[2]. This can be explained by the uniform flow rate past both 

regions of rotor 1 and rotor 2 is positioned in the wake of the 

inner region of rotor 1. 

 

5. CONCLUSIONS 
 

This study has proposed a new design in coaxial twin rotor 

horizontal axis turbine with a maximum power coefficient of 

814.0max =PC which is significantly larger than that of 

previous model [2]. The design proposes a 'bladeless' centre 

part of the upstream rotor which covers 58% of the rotor area 

or 76.2% of the rotor diameter. This part of the rotor only 

functions as a load transmitter and is not designed to extract 

the wind energy. See figure 6. The portion of the blade near 

the rotor tip is designed using the Betz theory, i.e. the velocity 

of the axial flow past the rotor is two-thirds of the free stream 

velocity. The velocity of the axial flow past the downstream 

rotor is 58.2% of the free stream velocity.  
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Fig.6 Illustration of the proposed design of a co-axial twin 

rotor horizontal axis turbine 
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