Lecture 9 – Kinetics of a particle Part 2: Work and Energy

		_	_	
Tha	work	of a	for	2

Let us first establish the definition of work. A force, denoted by a vector \mathbf{F} , is said to do
on a particle only when the

Figure 1

In the figure, the particle moves along the path from the original position $\bf r$ to a new position $\bf r'$. The displacement is given by $d\bf r=\bf r'-\bf r$, whose magnitude is represented by ds. If the angle between $d\bf r$ and $\bf F$ is θ , then the work dU, which is done by the force $\bf F$, is defined by

Note that the unit of work done is called a _______ By definition, 1 joule of work is done when one Newton of force moves one meter along its line of action.

Work of a variable force		
A force is said to be	when its	01
is		The total
work done of a variable force can be give	en by	
	 	
Work of a constant force		
For the case of a force \mathbf{F}_c , which of	and it	acts at a
	to the straight line path. The wo	rk done
when a particle is displaced from s_1 to s_2	can be determined using	
		

Work of a weight

If we consider a particle of mass \mathbf{m} , in a 3D space defined by a set of perpendicular x-y-and z-axes, its weight must be given by a vector $\mathbf{W} = -W\mathbf{j}$, i.e. its direction is always directly downwards. Suppose that a particle is displaced in the same 3D space along the path s from position s_1 to s_2 . An intermediate point, the displacement is given by $d\mathbf{r} = dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k}$. The amount of work done by the weight is given by

$$U_{1-2} = \int \mathbf{F} \cdot d\mathbf{r} = \int_{s_1}^{s_2} (-W\mathbf{j}) \cdot (dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k})$$
$$= \int_{y_1}^{y_2} -W \ dy = -W(y_2 - y_1)$$

Work of a spring force

Figure 2

A linear spring of stiffness k provides a restoring force _____when stretched (or compressed) by a displacement s. The force \mathbf{F}_s which stretches (or compresses) the spring is said to have done some work, as _____

Suppose the spring is stretched or compressed by an applied force \mathbf{F}_s from the original position s_1 to a new position s_2 , the total work done during this process is given by

$$U_{1-2} = \int_{s_1}^{s_2} F_s \ ds = \int_{s_1}^{s_2} ks \ ds$$

Note that the work done by the spring can be graphically represented by the area under the force-displacement curve.

kinetic energy.

Principle of work and energy

Recall the two main types of mechanical energies namely,	and
energies. These will be discussed further in	
topics in this lecture. One thing of note here is that the SI unit for energy	-
which is the same as that used for work done.	
Application of principle of work and energy for a system of particles	
Consider a particle <i>P</i> of mass <i>m</i> in figure 3. A resultant force	
(the resultant force represents a system of external forces) is acting on	the particle, so that
it moves along the path s , for example from point s_1 to point s_2 .	
The equation of motion of the particle in the tangential direction is giv	en by
Since the tangential acceleration can be written as	, the equation
of motion can be rewritten as	
$\sum_{s_1}^{s_2} F_t ds = \int_{v_1}^{v_2} mv dv$ $U_{1-2} = \frac{1}{2} m(v_2)^2 - \frac{1}{2} m(v_1)^2$	
	(EQN. 1)
where represents the	·
Equation 1 can be rearranged to give, wh	ich states that the
particle's initial kinetic energy plus the work done by all the forces act	ing on the particle
as it moves from its initial position to its final position is equal to the p	particle's final

This relationship of work and kinetic energy is particularly useful when one wants to determine the final velocity of the particle.

Equation 1 can also be extended to ______, i.e.

where the summation represent the total work done and kinetic energy of all particles considered in the system.

Work of dry friction

Figure 4

The figure shows a block P of mass m being pulled along a horizontal rough surface whose ______.

The initial velocity is given by v_1 and the final velocity is v_2 . We can apply equation 1 to obtain

Power

The definition of power states that	it is
	Its mathematical expression is given by

Recalling that the incremental work done is $dU = \mathbf{F} \cdot d\mathbf{r}$, hence it is possible to derive the following.

$$P = \frac{dU}{dt} = \frac{\mathbf{F} \cdot d\mathbf{r}}{dt} = \mathbf{F} \cdot \frac{d\mathbf{r}}{dt}$$

where \mathbf{v} represents the instantaneous velocity of the point which is acted upon by the force \mathbf{F} .

The SI unit of power is the ______ and the unit is defined as

The quantity power can be regarded as the capacity to do a certain amount of work in a given time.

Another common unit for power is the horsepower, where 1 horsepower is equivalent to 745.7 W.

Efficiency

Mechanical efficiency of a machine is defined as the ______ of output useful power produced to the input power supplied. The mathematical expression for efficiency is given by

arbitrary datum is given by

However, if the efficiency is being measured during the same time interval, we can directly evaluate the efficiency by comparing the amount of energy gained and supplied.
Note that some textbooks use the symbol to denote efficiency
Potential energy and conservation of forces
Conservative force
When the work done by a force in moving a particle from one point to another is
, then this force is considered a conservative
are examples of conservative forces.
On the other hand,
, i.e. the longer the path, the greater the work done. These forces are called nonconservative forces.
Potential energy
The potential energy of a particle comes from measured
relative to a fixed datum. Recall that kinetic energy is related to the
of the particle.
Gravitational potential energy
The potential energy of a particle of mass m located a distance y vertically above an

where a represents the acceleration due:	to gravity. It is possible for a particle to have
negative potential energy, if its vertical p	
Elastic potential energy	
When an elastic spring is stretched or co	ompressed by a distance s from the original
unstressed position, its elastic potential e	energy is given by
Note that	
has 'potential' for doing positive work of	on the particle to bring it back to the original
unstretched position.	
Potential function	
·	oth gravitational and elastic forces, the particle's
potential energy can be expressed as a p	•
I I I	
Conservation of energy	
When a particle is acted upon by a syste	m of conservative forces only, the total energy,
consisting of kinetic and potential energ	y, of the particle is considered conservative. A
mathematical expression showing the co	onservation of energy of a particle at two
instances is given by	

Let us consider the case of a ball being dropped to the ground. (Neglecting air resistance)

- 1. It is initially at rest at a height above the ground. Here its potential energy is at the maximum and the kinetic energy is zero.
- 2. The ball is falling with a certain speed at midway point. Here its potential energy is half its original value and it has already gained some kinetic energy.
- 3. The ball is about to hit the ground. Here its potential energy is said to be zero and its kinetic energy is at the maximum.

Conservation of energy of a system of particles

If a system of particles is subjected to conservative forces, then the total energy of the system is also conservative. This is represented by a mathematical expression as