Exercise 2

1. (Prob. 12-183) The motor draws in the cable at C with a constant velocity of $v_{c}=4 \mathrm{~m} / \mathrm{s}$. The motor draws in the cable at D with a constant acceleration of $a_{D}=8 \mathrm{~m} / \mathrm{s}^{2}$. If $v_{D}=0$ when $t=0$, determine
a. The time needed for block A to rise 3 m , and
b. The relative velocity of block A with respect to block B when this occurs

2. (Prob. 12/190) The girl at C stand near the edge of the pier and pulls in the rope horizontally at a constant speed of $1.8 \mathrm{~m} / \mathrm{s}$. Determine how fast the boat approaches the pier at the instant the rope length $A B$ is 15 m .

3. (Prob. 13/12) A car of mass m is traveling at a slow velocity v_{0}. If it is subjected to the drag resistance of the wind, which is proportional to its velocity, i.e., $F_{D}=k v$, determine the distance and the time the car will travel before its velocity becomes $0.5 v_{0}$. Assume no other frictional forces act on the car.

4. (Prob. 13/26) At the instant shown the $500-\mathrm{N}$ (approx. 50 kg) block A is moving down the plane at $2 \mathrm{~m} / \mathrm{s}$ while being attached to the $250-\mathrm{N}$ (approx. 25 kg) block B. If the coefficient of kinetic friction is $\mu_{k}=0.2$, determine the acceleration of A and the distance A slides before it stops. Neglect the mass of the pulleys and cables.

5. (Prob. 13/44) Each of the three plates has a mass of 10 kg . If the coefficients of static and kinetic friction at each surface of contact are $\mu_{s}=0.3$ and $\mu_{k}=0.2$, respectively, determine the acceleration of each plate when the three horizontal forces are applied.

6. (Prob. 13/48) Block B has a mass m and is hoisted using the cord and pulley system shown. Determine the magnitude of force \mathbf{F} as a function of the block's vertical position y so that when \mathbf{F} is applied the block rises with a constant acceleration \mathbf{a}_{B}. Neglect the mass of the cord and pulleys.

7. (Prob. 13/64) The airplane, traveling at a constant speed of $50 \mathrm{~m} / \mathrm{s}$, is executing a horizontal turn. If the plane is banked at $\theta=15^{\circ}$, when the pilot experiences only a normal force on the seat of the plane, determine the radius of curvature ρ of the turn. Also,
 what is the normal force of the seat on the pilot if he has a mass of 70 kg .
8. (Prob. 13/70) A collar having a mass of 0.75 kg and negligible size slides over the surface of a horizontal circular rod for which the coefficient of kinetic friction is $\mu_{k}=0.3$. If the collar is given a speed of $4 \mathrm{~m} / \mathrm{s}$ and the released at $\theta=0^{\circ}$, determine how far, s, it slides on the rod before coming to rest.

9. (Prob. 13/97) The smooth particle has a mass of 80 g . It is attached to and elastic cord extending from O to P and due to the slotted arm guide moves along the horizontal circular path $r=(0.8 \sin \theta) \mathrm{m}$. If the cord has a stiffness $\mathrm{k}=30 \mathrm{~N} / \mathrm{m}$ and an unstretched length of 0.25 m , determine the force of the guide on the particle when $\theta=60^{\circ}$. The guide has a constant angular velocity $\dot{\theta}=5 \mathrm{rad} / \mathrm{s}$.

10. (Prob. 13/103) The collar has a mass of 2 kg and travels along the smooth horizontal rod defined by the equiangular spiral $r=\left(e^{\theta}\right) \mathrm{m}$, where θ is in radians. Determine the tangential force F and the normal force N acting on the collar when $\theta=90^{\circ}$, if the force F maintains a constant angular motion $\dot{\theta}=2 \mathrm{rad} / \mathrm{s}$.

