## Lecture 9 – Kinetics of rigid bodies: Impulse and Momentum

| Momentum of 2-D Rigid Bodies |
|------------------------------|
|------------------------------|

| Recall that in lecture 5, we            | discussed the use of momentum of particles. Given that a     |
|-----------------------------------------|--------------------------------------------------------------|
| particle has a                          | , and is travelling with a,                                  |
| its momentum is given by                |                                                              |
|                                         |                                                              |
| Now, let us consider a 2-D              | rigid body of mass $m_G$ translating in a straight line with |
| velocity $\mathbf{v}_G$ . We can determ | ne the                                                       |
| of the rigid body by summ               | ng vectorially the linear momentum of each particle that     |
| makes up this body, i.e.                |                                                              |
|                                         | [Eqn. î                                                      |
| The term <b>L</b> in equation 1 d       | notes the rigid body linear momentum.                        |
|                                         |                                                              |
| When a 2-D rigid body und               | ergoes a rotational motion, its                              |
| is given by                             |                                                              |
|                                         | [Eqn.2                                                       |
| where H <sub>O</sub> is the angular m   | omentum of the rigid body about point O                      |
| $I_{\rm O}$ is the moment of            | inertial computed at point O                                 |
| $\omega$ Is the angular ve              | ocity of the rigid body                                      |

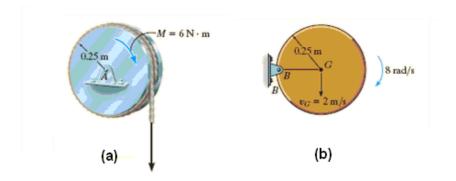



Figure 1

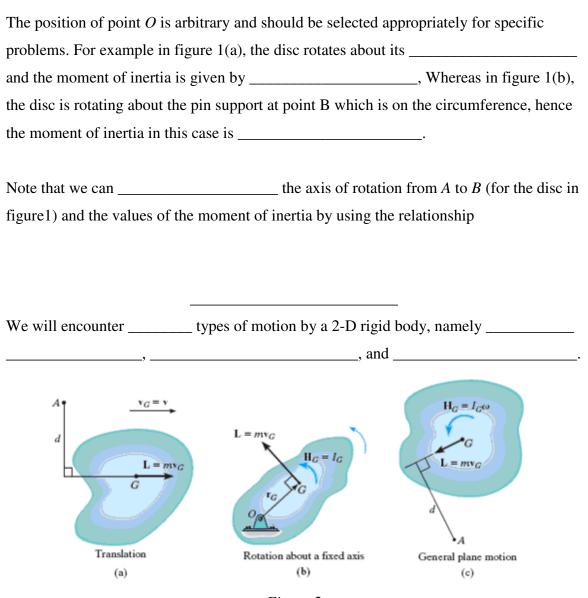
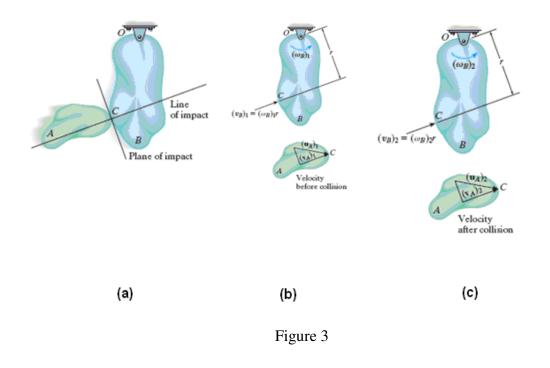



Figure 2

| This point is denoted by the subscript G.        |                                                |
|--------------------------------------------------|------------------------------------------------|
| Pure Translation                                 |                                                |
| For a 2-D rigid body undergoing only translation | onal motion, its momentum is given by          |
|                                                  |                                                |
|                                                  |                                                |
| Rotation About a Fixed Axis                      |                                                |
| For a 2-D rigid body undergoing rotational mo    | tion about a fixed axis, its momentum is       |
| given by                                         |                                                |
|                                                  |                                                |
|                                                  |                                                |
| or we can also compute the angular momentum      | at the rotational axis, denoted by point O     |
| in this case                                     |                                                |
|                                                  |                                                |
| General Plane Motion                             |                                                |
| For a 2-D rigid body in a general plane motion   | , i.e. it is undergoing both translational and |
| rotational motions, its momentum is given by     |                                                |
|                                                  |                                                |
|                                                  |                                                |
|                                                  |                                                |
|                                                  |                                                |

Note that we will usually compute the momentum at the centre of mass of the object.


## **Principle of Impulse and Momentum**

Linear Impulse and Momentum

| Recall that a linear impulse for a particle is given by                                     |
|---------------------------------------------------------------------------------------------|
| It is a vector quantity which quantifies the effects of a force during the time the force   |
| acts. It has the same direction as the force, and its magnitude has units of <i>N sec</i> . |
| The principle of linear impulse and momentum states that the                                |
| acted on the body by external forces during the time interval $t_1$ to $t_2$ is equal to    |
| of the body during the same time                                                            |
| interval. Rewriting this in a mathematical expression yields                                |
|                                                                                             |
|                                                                                             |
| [Eqn.3]                                                                                     |
|                                                                                             |
| Angular Impulse and Momentum                                                                |
| The principle of angular impulse momentum of a 2-D rigid body takes a similar form as       |
| the linear momentum. Hence, for a body undergoing general plane motion, this is given       |
| by                                                                                          |
|                                                                                             |
|                                                                                             |
|                                                                                             |
| [Eqn.4]                                                                                     |
| Combination of Linear and Angular Impulse and Momentum                                      |
| We can summarise the principle of impulse and momentum for a rigid body with planar         |
| motion, i.e. translation on $x$ - $y$ plane and rotation about $z$ axis, as                 |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |

## **Conservation of Momentum**

| Linear Momentum                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From equation 3, we see that if the acting on the                                                                                                                                                                                                                    |
| body over the time interval, the linear momentum of the system                                                                                                                                                                                                       |
| must be, i.e.                                                                                                                                                                                                                                                        |
| 0 = [Final linear momentum] - [Initial linear momentum] [Final linear momentum] = [Initial linear momentum]                                                                                                                                                          |
| We can apply the concept of momentum conservation when the linear impulses are                                                                                                                                                                                       |
| circumstances are small forces acting over very short period of time.                                                                                                                                                                                                |
| Angular Momentum $0 = [Final angular momentum] - [Initial angular momentum]$ $[Final angular momentum] = [Initial angular momentum]$                                                                                                                                 |
| The conservation of angular momentum takes a similar form as the linear part.                                                                                                                                                                                        |
| An example of conservation of angular momentum in practice is when a diver athlete executes a somersault. He tucks in his limps close to his body in order to reduce his body's moment of inertia, so that his angular velocity (in this case, spin rate) increases. |
| Eccentric Impact                                                                                                                                                                                                                                                     |
| An eccentric impact is an impact where the mass centres of two rigid bodies                                                                                                                                                                                          |
| (See figure 3a). In the case where alignment is present, we use the particle impact analysis as discussed in lecture 4.                                                                                                                                              |



Recall the \_\_\_\_\_\_ that we encountered before while analysing central impact. The coefficient of restitution is defined as the ratio of \_\_\_\_\_\_ of the points of contact just after impact to the \_\_\_\_\_ of these points.

Therefore, for the eccentric impact, the coefficient of restitution is given by

\_\_\_\_\_

where  $v_A$  denotes the velocity of body A in the direction of the line of impact  $v_B$  denotes the velocity of body B in the direction of the line of impact subscript 1 denotes the values before impact subscript 2 denotes the values after impact