Lecture 8 – Kinetics of a rigid body: Work and Energy | Work of a Force | |---| | A force is said to have done work when | | Work of a Variable Force | | A variable externally applied force \mathbf{F} moves the object along the path s . If the vector \mathbf{r} represents the displacement of the object, the work of a variable force \mathbf{F} along path s is | | given by (EQN. 1) | | Work of a Constant Force | | The magnitude and direction of a constant force must not change over time. If an object is acted upon by a constant force and undergoes a translation s, equation 1 simplifies to | | The term in the brackets represents the force component in the | | Work of a Weight | | The weight of an object is said to do work (or negative work) when the object undergoes a vertical displacement. The measurement of vertical displacement is usually defined as positive upwards on the <i>y</i> -axis, hence the expression for work of a weight is given by | | Work of a Linear Spring Force | | A linear spring generates a linearly increasing force with elongation or compression of | | the spring original length. Note that when stretched or compressed, the spring always | | exerts the force which tries to Hence, the direction of displacement of the body attached to the free end of the spring as | | shown in the figure is | _ to the direction of the | |---|---------------------------| | force. The resulting work done by a linear spring force is given by | | | | | | | | | where | | | | | | Work of a Couple | | | A couple is said to have done work when the object on which the c | couple is applied | | undergoes | about an axis | | perpendicular to the plane of motion. It is given by the expression | | | | | | | | | For a special case where the moment <i>M</i> has a | | | the above expression simplifies to | | | | | | | | ## **Kinetic Energy** Figure 1 Let us consider an arbitrarily shaped two-dimensional rigid body as shown in figure 1. It is rotating with an angular velocity ω *rad/sec*. Both points P and i are arbitrarily chosen. The kinetic energy of element i is given by _____ The total kinetic energy of this 2D body is therefore by the sum of kinetic energy of all elements, i.e. From kinematics of a 2D rigid body, the velocity of element i is given by $$\mathbf{v}_{i} = \mathbf{v}_{P} + \mathbf{v}_{Pi}$$ $$= (v_{P})_{x} \mathbf{i} + (v_{P})_{y} \mathbf{j} + [\omega \mathbf{k} \times (x \mathbf{i} + y \mathbf{j})]$$ $$= ((v_{P})_{x} - \omega y) \mathbf{i} + ((v_{P})_{y} + \omega x) \mathbf{j}$$ Hence, the square of magnitude of velocity of element i is $$(v_i)^2 = ((v_P)_x - \omega y)^2 + ((v_P)_y + \omega x)^2$$ = $(v_P)^2 - 2(v_P)_x \omega y + 2(v_P)_y \omega x + \omega^2 r^2$ Substituting the expression for the magnitude of velocity into equation 3 yields $$T = \frac{1}{2} \left(\int_{m} dm \right) (v_{p})^{2} - (v_{p})_{x} \omega \left(\int_{m} y \ dm \right) + (v_{p})_{y} \omega \left(\int_{m} x \ dm \right) + \frac{1}{2} \omega^{2} \left(\int_{m} r^{2} dm \right)$$ _____ (EQN.4) where \bar{x} is the distance between point P and the centre of mass in the x-direction \bar{y} is the distance between point P and the centre of mass in the y-direction I_P is the body's moment of inertia about the z-axis passing through point P Since point *P* has been arbitrarily chosen, we can freely change it to a convenient point in order to simplify the expression for the total kinetic energy. If point *P* coincides with ______ then equation 4 becomes _____ (EQN. 5) This equation represents a general form of the kinetic energy of a rigid body under a general plane motion. It is a sum of the body's ______ about the mass centre. Equation 5 can be simplified when applied to systems under certain constraints. For example, if only translation motions are allowed, the expression for total kinetic energy becomes _____ When the body undergoes a pure rotational motion about a fixed axis at point O, its kinetic energy is given by _____ where I_O is the moment of inertia of the body computed about an axis perpendicular to the plane of motion through point O. It is usually calculated using the parallel axis theorem. ## **Gravitational Potential Energy** Figure 2 It is usually acceptable to assume that the total weight of a body is concentrated at its centre of gravity, and its gravitational potential energy, relative to a fixed reference height, is given by _____ where W = mg is the weight of the body y_G is the vertical distance between the centre of mass and the reference height | Elastic Potential Energy | |---| | The elastic potential energy stored in an | | spring is given by | | where k is the spring stiffness | | s is the elongated or compressed length of the spring | | Principle of Work and Energy | | A similar expression as one used in the kinetic of a particle will be applied here. The sum | | of body's initial energy (kinetic and potential), plus the work done by all external forces | | and couples acting on the body as it moves from its initial to final position, is equal to the sum of its energies at the final position. | | (EQN. 6) | | Note that the gravitational potential energy terms in equation 6 are often omitted because | | the change $\Delta V = V_1 - V_2$ is the by the weight of the object. | | This term can be included in the sum of work done $\Sigma U_{\mbox{\scriptsize 1-2}}$. Therefore equation 6 can be | | rewritten as | | Conservation of Energy | | Given that an object is displaced from an initial position to a final position by means of | | forces only, i.e. nonconservative forces such as | | friction is not present in the system, $\Sigma(U_{1-2})_{\rm nonconservative}=0$. We can rewrite equation 6 as | | This equation represents the conservation of mechanical energy. Examples of mechanical | | systems which we can use this relationship are smooth, pin-connected rigid bodies, | bodies connected by inextensible cords, and bodies in mesh with other bodies. 5/5