Lecture 6: Planar Kinematics of Rigid Bodies: Part 2

Absolute Motion Analysis

When motion of a mechanical system is analysed by a stationary observer, it is said	
undergo an	analysis. In another
word, we will use aan absolute motion analysis.	frame of reference when we perform
Remember that a rigid body general plane	motion consists of, possibly simultaneous,
	motion

Figure 1

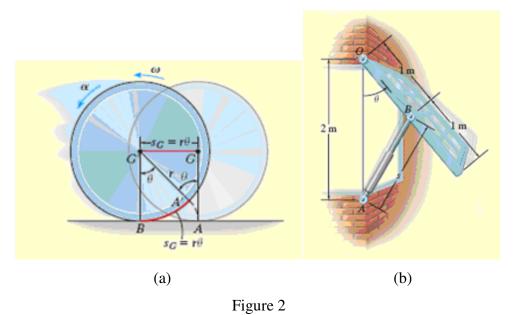
An example of a dump truck is shown in the above figure. The observer is positioned several metres from the back of the truck and sees that the bin is being tilted by means of a hydraulic shaft. Relative to the observer, points A and B are fixed, whereas the position of point *C* is not. Using the cosine rule the length of the hydraulic shaft is given by

We can then determine the speed at which the hydraulic shaft extends and the angular velocity of the bin (about point *C*) by ______ the above expression with respect to time. We then obtain

Note: Be careful when performing the differentiation with respect to time because every variable must be differentiated independently. The ______ must be used when working with a product of more than one variable.

Examples

- (a) Determine the velocity and acceleration of point *G* if the disc rolls without slipping
- (b) Determine the angular velocity and acceleration of the window about the hinge at the instance $\theta = 30^{\circ}$, if the hydraulic cylinder extends at a constant rate of v_s m/s.



Relative Motion Analysis

Let us consider an arbitrarily shaped object undergoing a general plane motion as shown in figure 3. The position of point A on the body can be described using a vector relative to the origin, hence it is described using a fixed frame of reference. However, the position of point B is then measured relative to point A and we will use a vector which is now in the x and y axes instead.

The x and y-axes form a translating reference, thus the study of motion of point B is a _____ analysis. Note that the x and y-axes are ____ to the original x- and y-axes, respectively

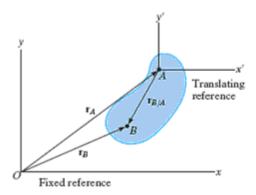


Figure 3

The position of point *B* is given by the vector

where the vector \mathbf{r}_{AB} locates point B with respect to point A

Relative Motion Displacement

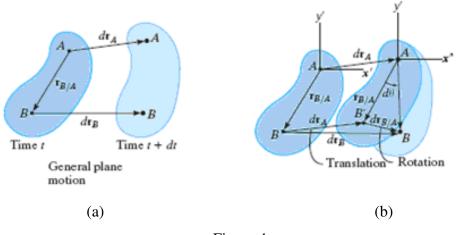


Figure 4

Suppose that a rigid body undergoes a displacement $d\mathbf{r}$ during an instance dt. The displacements of points A and B are denoted by $d\mathbf{r}_A$ and $d\mathbf{r}_B$, respectively. The relationship of these two displacements are given by

		(EQN.
where the vector	or $d\mathbf{r}_{AB}$	3 represents the
of point <i>B</i> relat	ive to	point A .
Relative Mo	tion '	Velocity
We can directly	diffe:	rentiate equation 1 with respect to time to obtain the equation for
·		ion now becomes
•	-	
where	$\mathbf{v}_{\scriptscriptstyle A}$	represents the velocity of point A (fixed frame of reference)
	$\mathbf{v}_{\scriptscriptstyle B}$	represents the velocity of point B (fixed frame of reference)
	\mathbf{v}_{AB}	represents the relative velocity of point B relative to point A
The distance be	etween	a points A and B always
since both poin	ts are	located within a rigid body, hence on the translating reference,
point B can onl	y rota	te about point A. The relative velocity can be given by the vector
		$\mathbf{v}_{AB} = \mathbf{\omega} \times \mathbf{r}_{AB}$
where ω is the	angul	ar velocity of the body measured from a fixed reference.
Therefore, the	velocit	ty equation can be rewritten as
		(EQN. :
Polotivo Mo	tion	Acceleration
		ation of two points on a rigid body can be obtained by
differentiating (equati	on 2 with respect to time to give

where \mathbf{a}_A denotes the acceleration of point A

 $\mathbf{a}_{\scriptscriptstyle B}$ denotes the acceleration of point B

 α denotes the angular acceleration of the body

 ω denotes the angular velocity of the body

 $(\mathbf{a}_{AB})_t$ denotes the relative tangential acceleration of B with respect to A

 $(\mathbf{a}_{AB})_n$ denotes the relative normal acceleration of B with respect to A

 \mathbf{r}_{AB} denotes the relative position vector from A to B

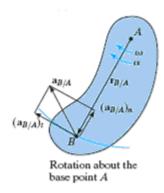


Figure 5

Example Determine the velocity of collar A at the instance shown in figure 6.

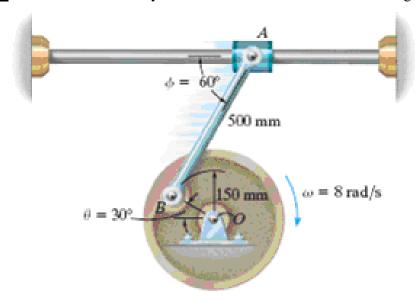


Figure 6

Instantaneous Centre of Zero Velocity

Let us consider the motion of a bicycle wheel as shown in figure 7. The wheel is rotating ______ with an angular velocity ω . At this instant, the velocity of point *IC* (which is a point on the wheel) is _____.



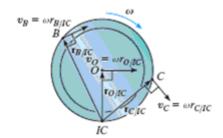


Figure 7

Using the instantaneous zero velocity condition at point IC, the velocities of other points on the wheel can be directly computed using the relationship

The location of the instantaneous centre of zero velocity (called IC for short) can be determined using one of the four methods shown in figure 8.

- (a) velocity of point A \mathbf{V}_A and the angular velocity of the body $\mathbf{\Omega}$ are known
- (b) velocities of points A and B, V_A and V_B , are not parallel
- (c) velocities of points A and B, \mathbf{V}_A and \mathbf{V}_B , are opposite and parallel (but do not coincide)
- (d) velocities of points A and B, \mathbf{V}_A and \mathbf{V}_B , are parallel and in the same direction but not equal in magnitude

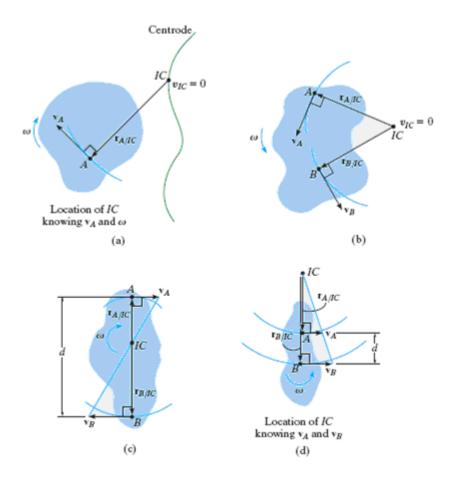


Figure 8

Example – Solve the problem in figure 6 using the instantaneous zero velocity method