Lecture 1A – Kinematics of Particles

Normai- i	angentiai	Coordinates	

We normally use the
to define the motion of a particle when
i.e. a roller coaster car must travel along its track, an object transported along a conveyer belt, etc.
For a (two dimensional) motion along the path (see figure) there are directions we need to look at
Tangential direction is the instantaneous direction of movement of the particle
the fixed path. It is positive in the direction of increasing s. This direction is represented by the unit vector
2. Normal direction is to the tangential direction and it
points towards the centre of the circle when the particle is moving along a
curved path. This direction is represented by the unit vector
Position Figure 1

Suppose that a particle travels along a two dimensional path defined by the function _____, the radius of curvature of this path is given by

For a 2D motion, the velocity	of a particle is given by	
The acceleration is given by		
where		
Therefore, the acceleration is	given by	

Dependent Motion

Figure 2 An example of a system of connected masses

Usually the analysis is based around the assumption that the cords used for connection
are inextensible, i.e. their total lengths always
For example, the total length of the cord in the example shown (neglecting the parts
without movements) is given by
[EQN.1]
Let us now consider the velocity of the masses A and B, these can be computed by
differentiating equation 1 with respect to time to obtain
[EQN.2]
Finally, the accelerations of the masses can be found by further differentiating
equation 2 with respect to time to obtain
[EQN.3]