Lecture 1A - Kinematics of Particles

Normal-Tangential Coordinates

We normally use the \qquad
to define the motion of a particle when \qquad ,
i.e. a roller coaster car must travel along its track, an object transported along a conveyer belt, etc.

For a \qquad (two dimensional) motion along the path \qquad
(see figure) there are \qquad directions we need to look at

1. Tangential direction is the instantaneous direction of movement of the particle
\qquad the fixed path. It is positive in the direction of increasing s. This direction is represented by the unit vector \qquad .
2. Normal direction is \qquad to the tangential direction and it points towards the centre of the circle when the particle is moving along a curved path. This direction is represented by the unit vector \qquad .

Figure 1

Suppose that a particle travels along a two dimensional path defined by the function
\qquad the radius of curvature of this path is given by

For a 2D motion, the velocity of a particle is given by

The acceleration is given by
where

Therefore, the acceleration is given by

Dependent Motion

Dependent motions of two particles are normally associated with systems of
\qquad via inextensible \qquad and
\qquad , such as one shown in the figure.

Figure 2 An example of a system of connected masses

Usually the analysis is based around the assumption that the cords used for connection are inextensible, i.e. their total lengths always \qquad .

For example, the total length of the cord in the example shown (neglecting the parts without movements) is given by

Let us now consider the velocity of the masses A and B, these can be computed by differentiating equation 1 with respect to time to obtain
\qquad
Finally, the accelerations of the masses can be found by further differentiating equation 2 with respect to time to obtain

